Torrefaction of biomass: does it reduce the risks of fuel ash slagging, fouling and corrosion in combustion?


The torrefaction of biomass is a thermal process performed at 240-300°C to upgrade a raw material to an output solid with increased energy density (MJ/kg), more homogenous and less vulnerable to biodegradation. The fuel obtained after torrefaction has properties which allow an easier handling and improved thermal performances in combustion. Beside physical properties, the fuel chemical composition is changed. Such changes influence the inorganic matter content, composition, association, and therefore the operational risks in combustion due to inorganic matter.


With this brief work, the potential of torrefaction to reduce the risks of fuel slagging, fouling and corrosion in combustion (due to the changes in the inorganic matter), by using a fuel characterization tool called BIOFACT, is verified. The analysis only refers to fuel composition. Specifically, the module to characterize the fuel for combustion BIOFACT-C is used. This module considers (v. 1.2): fouling, agglomeration/slagging, corrosion (high temperature), HCl emissions, particulate matter (PM10), SOx emissions. For each of such risks considered, the tool computes a semi-quantitative evaluation from 0 (lowest risk) to 100 (highest risk).

Two fuel samples are analyzed, considering the properties of the fuels before and after torrefaction, at different temperatures:

  • Eucalyptus wood, raw and torrefied at 220, 250, and 280°C
  • Birch wood, raw and torrefied at 240 and 280°C

The results are presented below.

Depending on the fuel, torrefaction could influence the risk of operational issues related to the fuel ash. Emissions (SOx, HCl) and high temperature corrosion might be reduced, depending on Cl and the other ash constituents. Nevertheless, based on the preliminary analysis – valid for those specific fuels – fouling and agglomeration/slagging are not reduced. PM10 emission risk could increase, due to the higher relative concentration of some PM forming inorganic matter in the fuel (on weight).

This preliminary analysis shall be confirmed by experimental results. The interested reader could look at the related working paper (which includes references), accessible here.


Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.